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Azomethines 1a-m react with ammonium thiocyanate/acetic 
acid to give the corresponding N-substituted-α-aminoisothio-
cyanates 2a-m which are found to be excellent starting materials 
for the synthesis of hexahydro-1,3,5-triazines 3a-m. Compounds 
2a-m on treatment with toluene-2,4-diisocyanate give the 
corresponding hexahydro-1,3,5-triazines 3a-m in good yields. 
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Hexahydro-1,3,5-triazines have been prepared 
previously by the reaction of organic isocyanates and 
isothiocyanates with thiourea1-3, alkali metal 
cyanates4, amidines5, imines6,7, enamines8 and 
imidates9. Solvent-free preparation of tris-pyrazoliy-
1,3,5-triazines10 as well as various camphor derived 
oxazolineazomethine imines11 and the synthesis of 
solution phase combinatorial library of 4,6-diamino-
1,2-dihydro-1,3,5-triazines12 were reported recently. 
Moreover, sequential aza-Wittig/cycloaddition/ring-
transformation reactions leading to one-pot synthesis 
of novel 1,3,5 triazine derivatives13 are also known. In 
this paper, we report the synthesis of hexahydro-
1,3,5-triazines 3a-m from the reaction of N-substi-
tuted-α-aminoisothiocyanates 2a-m with toluene-2,4-
diisocyanate. N-substituted-α-amino-isothiocyanates 

2a-m were obtained by the addition of ammonium 
thiocyanate/acetic acid to azomethines 1a-m.  

Results and Discussion 
N-substituted-α-aminoisothiocyanates 2a-m can be 

prepared in excellent yields (80-100%) on addition of 
ammonium thiocyanate in one lot to a stirred solution 
of azomethines 1a-m in acetic acid (Scheme I). The 
structural assignment of 2a-m is based primarily on 
spectral data. The IR spectra of 2a-m exhibit the 
strong absorption assignable to –NCS group at 2050 
cm-1. The elemental analysis was also consistent with 
the assigned structure (Table I). 

Toluene-2,4-di(arylalkyl)-6-thioxo-1,3,5-triazinan-
2-one derivatives 3a-m were obtained in moderate to 
excellent yields from the reaction of 2a-m with 
toluene-2,4-diisocyanate in dry THF at reflux 
temperature (Scheme II). Dropwise addition of 
toluene-2,4-diisocyanate and the use of dry THF as 
the solvent are indispensable in these reactions. When 
toluene-2,4-diisocyanate was added in one portion or 
the reaction was performed in solvents such as 
benzene or chloroform, the yields of triazines 3a-m 
came down drastically and large amounts of the 
corresponding isocyanate trimers were obtained. 

The structural assignment of 3a-m is based 
primarily on spectral data. The IR spectra exhibit the 
absorptions assignable to -NH, >C=O and >C=S 
groups at 3260-80, 1710, 1590 and 1340-1320 cm-1 
respectively. In the 1H NMR spectra of the triazines 
3a-m, the –NH-C=S proton signals were obtained 
around δ12.1-12.4, which disappeared on D2O 
exchange. A prominent singlet for the methyl group 
of toluene-2,4-diisocyanate was observed around δ 
2.2-2.35 in case of all the compounds 3a-m. The 
elemental analysis was found to be consistent with the 
structures assigned (Table II). The mass spectra  
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Table I ⎯ Characterization data of compounds 2a-m 
 

Found % (Calcd) Compd 
 

R R1 R2 R3 R4 Yield
(%) 

m. p.
°C 

Mol. formula 
C H N 

2a H H OCH3 H H 92 145 C 15H 14N 2OS 66.5 
(66.7 

5.2 
5.2 

10.3
10.4) 

2b 
 

H H OCH3 H Cl 94 172 C 15H 13N 2OSCl 59.1 
(59.1 

4.2 
4.3 

9.2 
9.2) 

2c H OCH3 OCH3 OCH3 H 96 152 C 17 H 18N 2O 3S 61.8 
(61.9 

5.5 
5.5 

8.6 
8.4) 

2d H OCH3 OCH3 OCH3 Cl 91 133 C 17H 17N 2O 3SCl 60.0 
(55.9 

4.6 
4.6 

7.7 
7.6) 

2e H H H H H 83 160 C 14H 12N 2S 69.9 
(70.0 

5.1 
5.0 

11.6
11.6) 

2f H H H H Cl 90 173 C 14H 11N 2SCl 61.1 
(61.3 

4.0 
4.0 

10.2
10.1) 

2g CH3 H CI H H 94 140 C 15H 13N 2SCl 62.7 
(62.5 

4.4 
4.5 

9.6 
9.7) 

2h CH3 H H H H 92 158 C 15H 14N 2S 70.7 
(70.8 

5.4 
5.5 

11.0
11.0) 

2i CH3 H OCH3 H Cl 86 212 C 16H 15N 2OSCl 60.1 
(60.2 

4.8 
4.7 

8.7 
8.7) 

2j CH3 H Cl H Cl 89 224 C 15H 12N 2SCl 2 55.5 
(55.7 

3.6 
(3.7 

8.9 
8.6) 

2k CH3 H CH3 H Cl 90 218 C 16H 15N 2SCl 63.6 
(63.4 

4.8 
4.9 

9.1 
9.2) 

2l CH3 H H H Cl 91 208 C 15H 10N 2SCl 63.0 
(63.0 

3.7 
3.5 

9.7 
9.8) 

2m H CH3 H H H 85 175 C 15H 14N 2S 70.6 
(70.8 

5.4 
5.5 

11.1
11.0) 

 

 

Table II ⎯ Characterization data of compounds 3a-m 
 

Compd R R 1 R 2 R 3 R4 Yield m. p. Mol.  Found % (calcd) 1H NMR (CDCl3) 
      (%) 0 C formula C H N δ ppm 

3a H H OCH 3 H H 52 132 C39H 34N 6O 4S2 65.7 
(65.5 

4.7 
4.7 

11.8 
11.7) 

2.3, bs (3H), 7.1-7.9, m (3H), 6.9, 
bs (2H), 12.2, bs (2H), 7.0-7.2, m 
(10H), 4.25, s (6H), 7.1-7.3, m 
(8H) 

3b H H OCH 3 H Cl 65 225 C39H 32N 6O 4S 2Cl2 60.0 
(59.8 

3.8 
4.0 

10.6 
10.7) 

2.2, bs (3H), 7.15-7,.m (3H), 6.1, 
bs (2H), 12.3, bs (2H), 7.0-7.2, m 
(8H), 4.2, s (6H), 7.1-7.25, m 
(8H) 

3c H OCH 3 OCH 3 OCH 3 H 51 170 C43H 42N 6O 8S 2 61.7 
(61.8 

5.0 
5.0 

10.2 
10.0) 

2.25, bs (3H), 7.2-7.8, m (3H), 
6.0, bs (2H), 12.2, bs (2H), 7.15-
7.8, m (8H), 4.3, s (18H), 7.1-7.3, 
m (6H), 

3d H OCH 3 OCH 3 OCH 3 Cl 60 177 C43H 40N 6O 8S 2Cl2 57.2 
(57.1 

4.4 
4.4 

9.5 
9.3) 

2.28, bs (3H), 7.2-7.9, m (3H), 
6.2, bs (2H), 12.3, bs (2H), 7.2-
7.9, m (6H), 4.32, s (18H), 7.2-
7.9, m (6H) 

3e H H H H H 53 165 C37H 30N 6O 2S2 67.7 
(67.8 

4.4 
4.5 

12.7 
12.8) 

2.35, bs (3H), 7.0-7.9, m (3H), 
6.0, bs (2H), 12.25, bs (2H), 7.2-
7.9, m (10H), 7.2-7.9, m (10H) 

             ⎯ Contd
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Table II ⎯ Characterization data of compounds 3a-m ⎯ Contd 
 

Compd R R 1 R 2 R 3 R4 Yield m. p. Mol.  Found % (calcd) 1H NMR (CDCl3) 
      (%) 0 C formula C H N δ ppm 

3f H H H H Cl 58 154 C37H 28N 6O 2S 2Cl2 61.4 
(61.4 

3.7 
3.8 

11.7 
11.6) 

2.30, bs (3H), 7.1-7.85, m (3H), 
6.1, bs (2H), 12.25, bs (2H), 7.2--
6, m (8H), 7.0-7.3, m (10H) 

3g CH3 H CI H H 57 168 C39H 32N 6O 2S 2Cl2 62.7 
(62.31 

4.5 
4.26 

11.2 
11.1) 

2.30, bs (9H), 7.0-7.9, m (3H), 
6.2, bs (2H), 12.30, bs (2H), 7.0-
7.6, m (10H), 7.0-7.3, m (6H) 

3h CH3 H H H H 48 140 C39H 34N 6O 2S2 69.1 
(68.6 

4.3 
4.9 

12.2 
12.3) 

2.30, bs (9H), 7.1-7.8, m (3H), 
6.20, bs (2H), 12.30, bs (2H), 
7.1-7.6, m (10H), 7.1-7.6, m (8H) 

3i CH3 H OCH 3 H Cl 41 273 C41H 36N 6O4S 2Cl2 60.6 
(60.6 

4.2 
4.4 

10.4 
10.3) 

2.25, bs (9H), 7.2-7.9, m (3H), 
6.20, bs (2H), 12.20, bs (2H), 
7.2-6.5, m (8H), 4.30 s (6H), 7.1-
7.3, m (6H) 

3j CH3 H Cl H Cl 53 280 C39H 36N 6O 2S 2Cl4 56.8 
(56.6 

4.2 
4.3 

10.0 
10.1) 

2.20, bs (9H), 7.1-7.85, m (3H), 
6.25, bs (2H),12.25, bs (2H), 7.1-
7.5, m (8H), 7.1-7.85, m (6H) 

3k CH3 H CH 3 H Cl 58 235 C41H 36N 6O 2S 2Cl2 63.0 
(63.1 

4.3 
4.6 

10.6 
10.7) 

2.30, bs (15H), 7.10-7.8, m (3H), 
6.20, bs (2H), 12.25, bs (2H), 
7.0-7.75, m (8H), 7.1-7.5, m (6H) 

3l CH3 H H H Cl 50 230 C39H 32N 6O 2S 2Cl2 62.5 
(62.3 

4.1 
4.2 

11.0 
11.1) 

2.25, bs (9H), 7.0-7.9, m (3H), 
6.30, bs (2H), 12.20, bs (2H), 
7.0-7.65, m (8H), 7.0-7.5, m (8H) 

3m H CH3 H H H 60 196 C39H 34N 6O 2S2 68.4 
(68.6 

4.9 
4.9 

12.4 
12.3) 

2.26, bs (9H), 7.0-7.8, m (3H), 
6.25, bs (2H), 12.20, bs (2H), 7.6, 
m (8H), 7.0-7.5, m (8H) 
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showed weak molecular ion peaks because these 
triazines 3a-m are very easily susceptible to 
fragmentation under electron impact. The results are 
in agreement with those obtained previously in case 
of hexahydro-1,3,5-triazines14,15. Mass spectra of 
toluene-2,4-di(4-(p-methoxyphenyl),-5-(m-chlorophe-
nyl))-6-thioxo-1,3,5-triazinan-2-one 3b, showed peaks 
at m/z 133, 59,192 and 154. However, toluene-2,4-

di(4-(p-methoxyphenyl),-5-(phenyl))-6-thioxo-1,3,5-
triazinan-2-one 3a, showed peaks at m/z 133,59,192 
and 119. The fragmentation patterns of 3a and 3b are 
shown in Schemes III and IV respectively. 

Other common features noted in the fragmentation 
pattern of 3a-m are, loss of fragments of m/z 
133(Path-a) and 59(Path-b), 192 (Path-c) and the 
fragment whose mass depends upon the substitution at 
the N-aryl ring. For example, in case of toluene-2,4-
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di(4-(p-methoxyphenyl),-5-(m-chlorophenyl)-6-thioxo-
1,3,5-triazinan-2-one 3b, where N-aryl ring is substi-
tuted by chlorine, fragment m/z 154 is obtained (Path-
d), whereas in case of toluene-2,4-di(4-(p-methoxy-
phenyl),-5-(phenyl))-6-thioxo-1,3,5-triazinan-2-one 
3a, where there is no substitution on the N-aryl ring, 
fragment of m/z 119 is obtained (Path-d) (Scheme V) 
which clearly supports the assigned structures.  

The possible general mechanism for the formation 
of hexahydro-s-triazines 3a-m from various N-
substituted-α-amino isothiocyanates 2a-m and 
toluene-2,4-diisocyanate is described in Scheme VI.  

In conclusion, N-substituted-α-aminoisothiocyanates, 

which can be easily prepared by the addition of ammonium 
thiocyanate/acetic acid (thiocyanic acid) to an equimolar 
mixture of aromatic carbonyl compounds and aromatic 
amines were found to be useful starting materials for the 
synthesis of hexahydro-1,3,5-triazine derivatives. The chief 
advantage of this method over the other existing methods is 
that α-aminoisothiocyanates are obtained in isolable 
quantitative yields, and their further reaction with toluene-
2,4-diisocyanate produces excellent yields of triazines with 
no other side products unlike in some other cases6,7. 

Experimental  
Melting points were determined in open capillary 
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tubes in sulphuric acid bath and are uncorrected. 
Infrared spectra were recorded in KBr pellets on a 
Perkin-Elmer spectrophotometer and 1H NMR spectra 
on a EM-390, 90MHz NMR spectrometer using 
tetramethylsilane (TMS) as internal standard. The 
homogeneity of compounds was checked by TLC on 
silica-gel G plates and spots were located in iodine 
vapour chamber. 

General procedure for the synthesis of N-
substituted-α-aminoisothiocyanates 2a-m from 
azomethines 1a-m. 

To a stirred solution of 1a-m (0.01 mole) in glacial 
acetic acid was added ammonium thiocyanate (0.015 
mole) in one lot. After stirring for 30 min, N-
substituted-α–aminoisothiocyanate 2a-m separated 
out which was filtered, washed with water, dried and 
purified by recrystallization from ethanol or ethanol-
THF mixture (Table I).  

General procedure for the synthesis of toluene-2,4-
di(arylalkyl)-6-thioxo-1,3,5-triazinan-2-one deriva-
tives 3a-m from 2a-m 

A solution of toluene-2,4-diisocyanate (0.005 
mole) in THF was added dropwise to a solution of N-
substituted-α-aminoisothiocyanate 2a-m (0.01mole) 
in THF at reflux temperature. The reaction mixture 
was refluxed for 4-5 hr. The solvent was evaporated 
to give 3a-m, which was filtered and purified by 
recrystallization from MeOH-THF mixture. The 1H 
NMR data for 3a-m is shown in Table II.  
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