

Note

Synthesis of hexahydro-1,3,5-triazines: A new approach from N-substituted- α -aminoisothiocyanates

Harish Kumar*, Rita Goyal, Anupama Parmar
& Sukhwinder Kaur

Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal 148 106, India

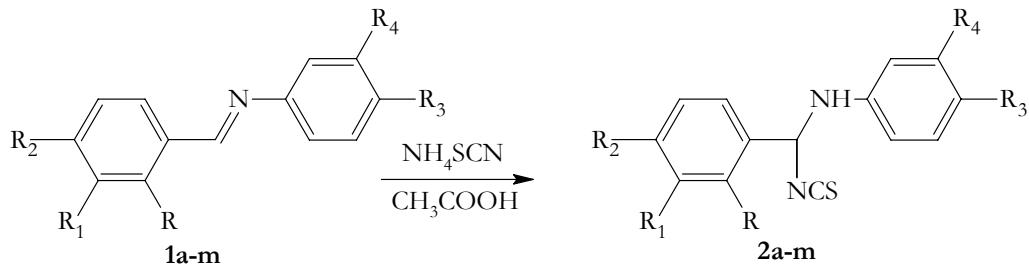
Received 22 November 2004; accepted (revised) 24 June 2005

Azomethines **1a-m** react with ammonium thiocyanate/acetic acid to give the corresponding N-substituted- α -aminoisothiocyanates **2a-m** which are found to be excellent starting materials for the synthesis of hexahydro-1,3,5-triazines **3a-m**. Compounds **2a-m** on treatment with toluene-2,4-diisocyanate give the corresponding hexahydro-1,3,5-triazines **3a-m** in good yields.

Keywords: Triazines, azomethines, ammonium thiocyanate, thiocyanic acid

IPC: Int.Cl. ⁷ C 07 C, C 07 D

Hexahydro-1,3,5-triazines have been prepared previously by the reaction of organic isocyanates and isothiocyanates with thiourea¹⁻³, alkali metal cyanates⁴, amidines⁵, imines^{6,7}, enamines⁸ and imides⁹. Solvent-free preparation of tris-pyrazolyl-1,3,5-triazines¹⁰ as well as various camphor derived oxazolineazomethine imines¹¹ and the synthesis of solution phase combinatorial library of 4,6-diamino-1,2-dihydro-1,3,5-triazines¹² were reported recently. Moreover, sequential aza-Wittig/cycloaddition/ring-transformation reactions leading to one-pot synthesis of novel 1,3,5-triazine derivatives¹³ are also known. In this paper, we report the synthesis of hexahydro-1,3,5-triazines **3a-m** from the reaction of N-substituted- α -aminoisothiocyanates **2a-m** with toluene-2,4-diisocyanate. N-substituted- α -amino-isothiocyanates


2a-m were obtained by the addition of ammonium thiocyanate/acetic acid to azomethines **1a-m**.

Results and Discussion

N-substituted- α -aminoisothiocyanates **2a-m** can be prepared in excellent yields (80-100%) on addition of ammonium thiocyanate in one lot to a stirred solution of azomethines **1a-m** in acetic acid (**Scheme I**). The structural assignment of **2a-m** is based primarily on spectral data. The IR spectra of **2a-m** exhibit the strong absorption assignable to -NCS group at 2050 cm⁻¹. The elemental analysis was also consistent with the assigned structure (**Table I**).

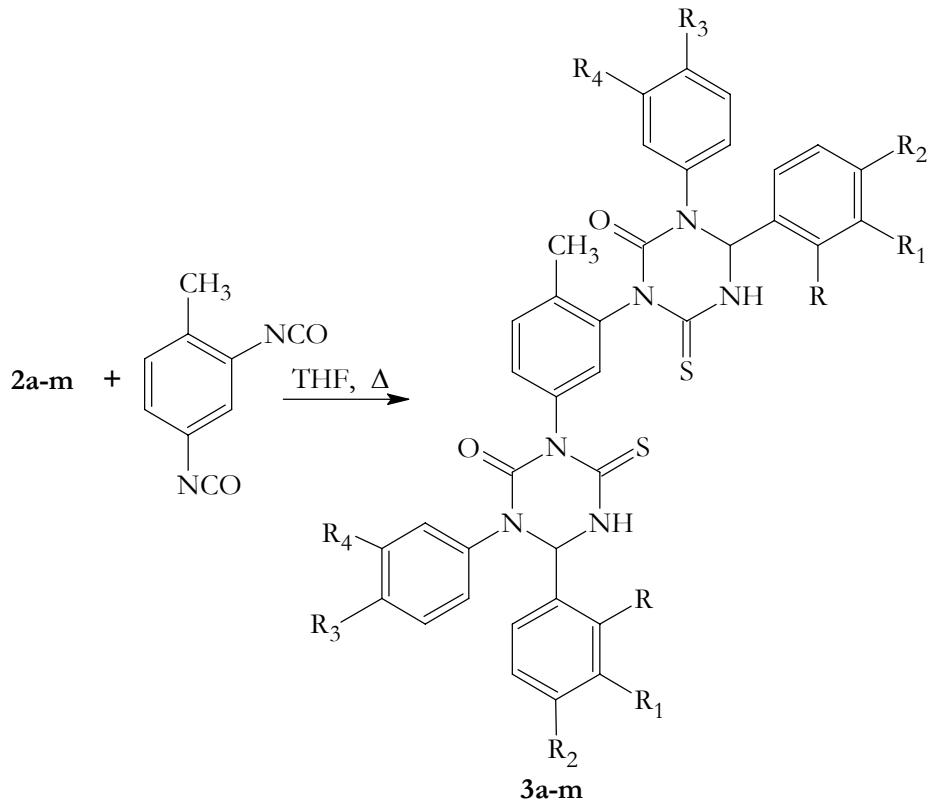
Toluene-2,4-di(arylalkyl)-6-thioxo-1,3,5-triazinan-2-one derivatives **3a-m** were obtained in moderate to excellent yields from the reaction of **2a-m** with toluene-2,4-diisocyanate in dry THF at reflux temperature (**Scheme II**). Dropwise addition of toluene-2,4-diisocyanate and the use of dry THF as the solvent are indispensable in these reactions. When toluene-2,4-diisocyanate was added in one portion or the reaction was performed in solvents such as benzene or chloroform, the yields of triazines **3a-m** came down drastically and large amounts of the corresponding isocyanate trimers were obtained.

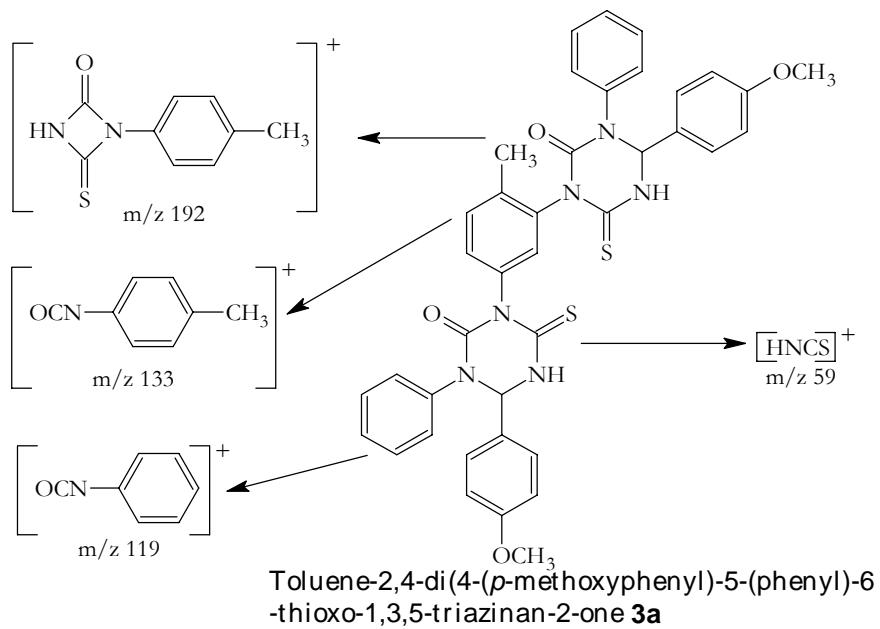
The structural assignment of **3a-m** is based primarily on spectral data. The IR spectra exhibit the absorptions assignable to -NH, >C=O and >C=S groups at 3260-80, 1710, 1590 and 1340-1320 cm⁻¹ respectively. In the ¹H NMR spectra of the triazines **3a-m**, the -NH-C=S proton signals were obtained around δ 12.1-12.4, which disappeared on D₂O exchange. A prominent singlet for the methyl group of toluene-2,4-diisocyanate was observed around δ 2.2-2.35 in case of all the compounds **3a-m**. The elemental analysis was found to be consistent with the structures assigned (**Table II**). The mass spectra

Scheme I

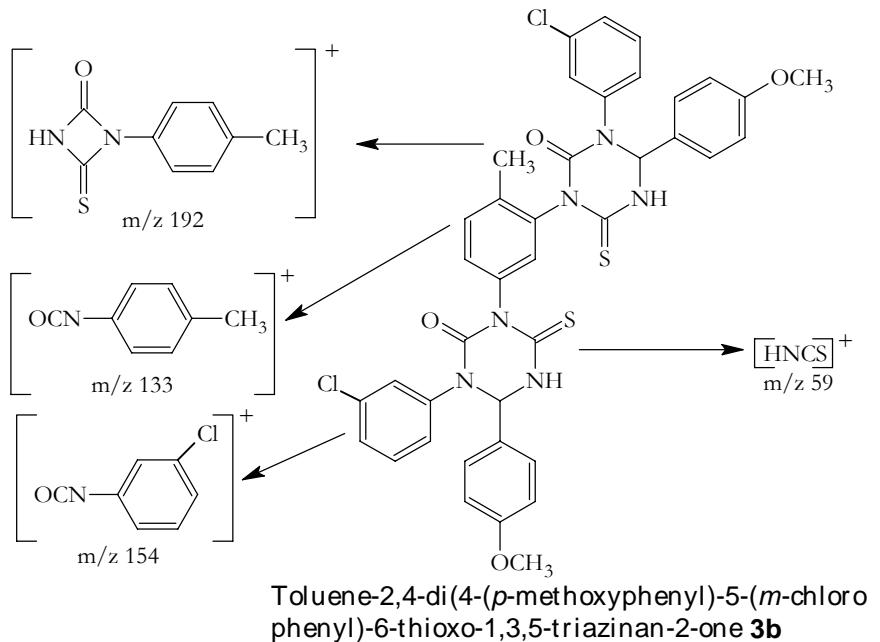
Table I—Characterization data of compounds **2a-m**

Compd	R	R ¹	R ²	R ³	R ⁴	Yield (%)	m. p. °C	Mol. formula	Found % (Calcd)		
									C	H	N
2a	H	H	OCH ₃	H	H	92	145	C ₁₅ H ₁₄ N ₂ OS	66.5 (66.7)	5.2 (5.2)	10.3 (10.4)
2b	H	H	OCH ₃	H	Cl	94	172	C ₁₅ H ₁₃ N ₂ OSCl	59.1 (59.1)	4.2 (4.3)	9.2 (9.2)
2c	H	OCH ₃	OCH ₃	OCH ₃	H	96	152	C ₁₇ H ₁₈ N ₂ O ₃ S	61.8 (61.9)	5.5 (5.5)	8.6 (8.4)
2d	H	OCH ₃	OCH ₃	OCH ₃	Cl	91	133	C ₁₇ H ₁₇ N ₂ O ₃ SCl	60.0 (55.9)	4.6 (4.6)	7.7 (7.6)
2e	H	H	H	H	H	83	160	C ₁₄ H ₁₂ N ₂ S	69.9 (70.0)	5.1 (5.0)	11.6 (11.6)
2f	H	H	H	H	Cl	90	173	C ₁₄ H ₁₁ N ₂ SCl	61.1 (61.3)	4.0 (4.0)	10.2 (10.1)
2g	CH ₃	H	Cl	H	H	94	140	C ₁₅ H ₁₃ N ₂ SCl	62.7 (62.5)	4.4 (4.5)	9.6 (9.7)
2h	CH ₃	H	H	H	H	92	158	C ₁₅ H ₁₄ N ₂ S	70.7 (70.8)	5.4 (5.5)	11.0 (11.0)
2i	CH ₃	H	OCH ₃	H	Cl	86	212	C ₁₆ H ₁₅ N ₂ OSCl	60.1 (60.2)	4.8 (4.7)	8.7 (8.7)
2j	CH ₃	H	Cl	H	Cl	89	224	C ₁₅ H ₁₂ N ₂ SCl ₂	55.5 (55.7)	3.6 (3.7)	8.9 (8.6)
2k	CH ₃	H	CH ₃	H	Cl	90	218	C ₁₆ H ₁₅ N ₂ SCl	63.6 (63.4)	4.8 (4.9)	9.1 (9.2)
2l	CH ₃	H	H	H	Cl	91	208	C ₁₅ H ₁₀ N ₂ SCl	63.0 (63.0)	3.7 (3.5)	9.7 (9.8)
2m	H	CH ₃	H	H	H	85	175	C ₁₅ H ₁₄ N ₂ S	70.6 (70.8)	5.4 (5.5)	11.1 (11.0)


Table II—Characterization data of compounds **3a-m**


Compd	R	R ¹	R ²	R ³	R ⁴	Yield (%)	m. p. °C	Mol. formula	Found % (calcd)			¹ H NMR (CDCl ₃) δ ppm
									C	H	N	
3a	H	H	OCH ₃	H	H	52	132	C ₃₉ H ₃₄ N ₆ O ₄ S ₂	65.7 (65.5)	4.7 (4.7)	11.8 (11.7)	2.3, bs (3H), 7.1-7.9, m (3H), 6.9, bs (2H), 12.2, bs (2H), 7.0-7.2, m (10H), 4.25, s (6H), 7.1-7.3, m (8H)
3b	H	H	OCH ₃	H	Cl	65	225	C ₃₉ H ₃₂ N ₆ O ₄ S ₂ Cl ₂	60.0 (59.8)	3.8 (4.0)	10.6 (10.7)	2.2, bs (3H), 7.15-7.1, m (3H), 6.1, bs (2H), 12.3, bs (2H), 7.0-7.2, m (8H), 4.2, s (6H), 7.1-7.25, m (8H)
3c	H	OCH ₃	OCH ₃	OCH ₃	H	51	170	C ₄₃ H ₄₂ N ₆ O ₈ S ₂	61.7 (61.8)	5.0 (5.0)	10.2 (10.0)	2.25, bs (3H), 7.2-7.8, m (3H), 6.0, bs (2H), 12.2, bs (2H), 7.15-7.8, m (8H), 4.3, s (18H), 7.1-7.3, m (6H),
3d	H	OCH ₃	OCH ₃	OCH ₃	Cl	60	177	C ₄₃ H ₄₀ N ₆ O ₈ S ₂ Cl ₂	57.2 (57.1)	4.4 (4.4)	9.5 (9.3)	2.28, bs (3H), 7.2-7.9, m (3H), 6.2, bs (2H), 12.3, bs (2H), 7.2-7.9, m (6H), 4.32, s (18H), 7.2-7.9, m (6H)
3e	H	H	H	H	H	53	165	C ₃₇ H ₃₀ N ₆ O ₂ S ₂	67.7 (67.8)	4.4 (4.5)	12.7 (12.8)	2.35, bs (3H), 7.0-7.9, m (3H), 6.0, bs (2H), 12.25, bs (2H), 7.2-7.9, m (10H), 7.2-7.9, m (10H)

—Contd


Table II — Characterization data of compounds **3a-m** — *Contd*

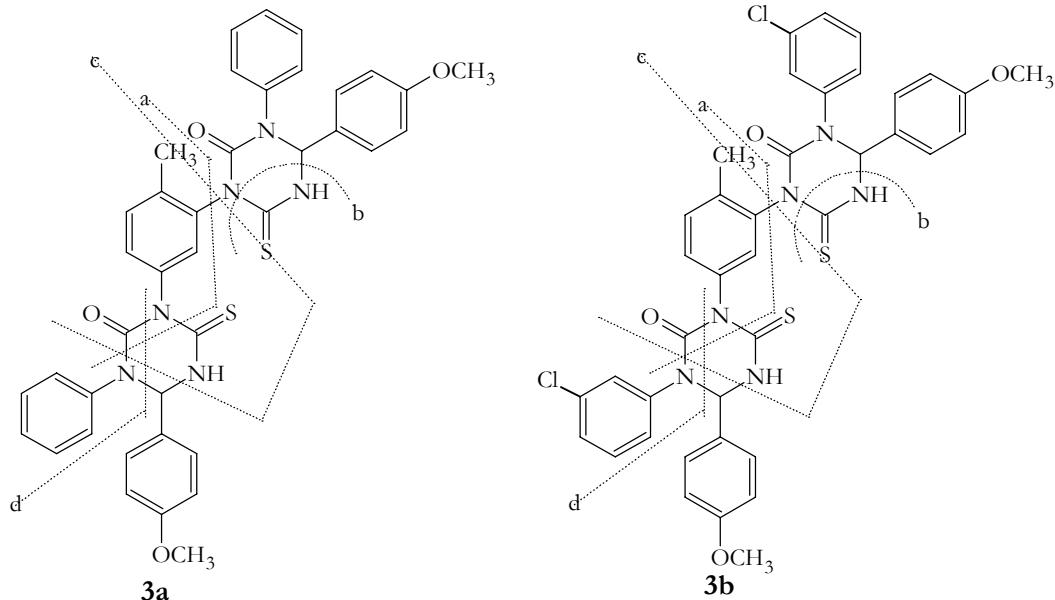
Compd	R	R ¹	R ²	R ³	R ⁴	Yield (%)	m. p. °C	Mol. formula	Found % (calcd)			¹ H NMR (CDCl ₃) δ ppm
									C	H	N	
3f	H	H	H	H	Cl	58	154	C ₃₇ H ₂₈ N ₆ O ₂ S ₂ Cl ₂	61.4 (61.4)	3.7 3.8	11.7 11.6	2.30, bs (3H), 7.1-7.85, m (3H), 6.1, bs (2H), 12.25, bs (2H), 7.2- 6, m (8H), 7.0-7.3, m (10H)
3g	CH ₃	H	Cl	H	H	57	168	C ₃₉ H ₃₂ N ₆ O ₂ S ₂ Cl ₂	62.7 (62.31)	4.5 4.26	11.2 11.1	2.30, bs (9H), 7.0-7.9, m (3H), 6.2, bs (2H), 12.30, bs (2H), 7.0- 7.6, m (10H), 7.0-7.3, m (6H)
3h	CH ₃	H	H	H	H	48	140	C ₃₉ H ₃₄ N ₆ O ₂ S ₂	69.1 (68.6)	4.3 4.9	12.2 12.3	2.30, bs (9H), 7.1-7.8, m (3H), 6.20, bs (2H), 12.30, bs (2H), 7.1-7.6, m (10H), 7.1-7.6, m (8H)
3i	CH ₃	H	OCH ₃	H	Cl	41	273	C ₄₁ H ₃₆ N ₆ O ₄ S ₂ Cl ₂	60.6 (60.6)	4.2 4.4	10.4 10.3	2.25, bs (9H), 7.2-7.9, m (3H), 6.20, bs (2H), 12.20, bs (2H), 7.2-6.5, m (8H), 4.30 s (6H), 7.1- 7.3, m (6H)
3j	CH ₃	H	Cl	H	Cl	53	280	C ₃₉ H ₃₆ N ₆ O ₂ S ₂ Cl ₄	56.8 (56.6)	4.2 4.3	10.0 10.1	2.20, bs (9H), 7.1-7.85, m (3H), 6.25, bs (2H), 12.25, bs (2H), 7.1- 7.5, m (8H), 7.1-7.85, m (6H)
3k	CH ₃	H	CH ₃	H	Cl	58	235	C ₄₁ H ₃₆ N ₆ O ₂ S ₂ Cl ₂	63.0 (63.1)	4.3 4.6	10.6 10.7	2.30, bs (15H), 7.10-7.8, m (3H), 6.20, bs (2H), 12.25, bs (2H), 7.0-7.75, m (8H), 7.1-7.5, m (6H)
3l	CH ₃	H	H	H	Cl	50	230	C ₃₉ H ₃₂ N ₆ O ₂ S ₂ Cl ₂	62.5 (62.3)	4.1 4.2	11.0 11.1	2.25, bs (9H), 7.0-7.9, m (3H), 6.30, bs (2H), 12.20, bs (2H), 7.0-7.65, m (8H), 7.0-7.5, m (8H)
3m	H	CH ₃	H	H	H	60	196	C ₃₉ H ₃₄ N ₆ O ₂ S ₂	68.4 (68.6)	4.9 4.9	12.4 12.3	2.26, bs (9H), 7.0-7.8, m (3H), 6.25, bs (2H), 12.20, bs (2H), 7.6, m (8H), 7.0-7.5, m (8H)

Scheme II

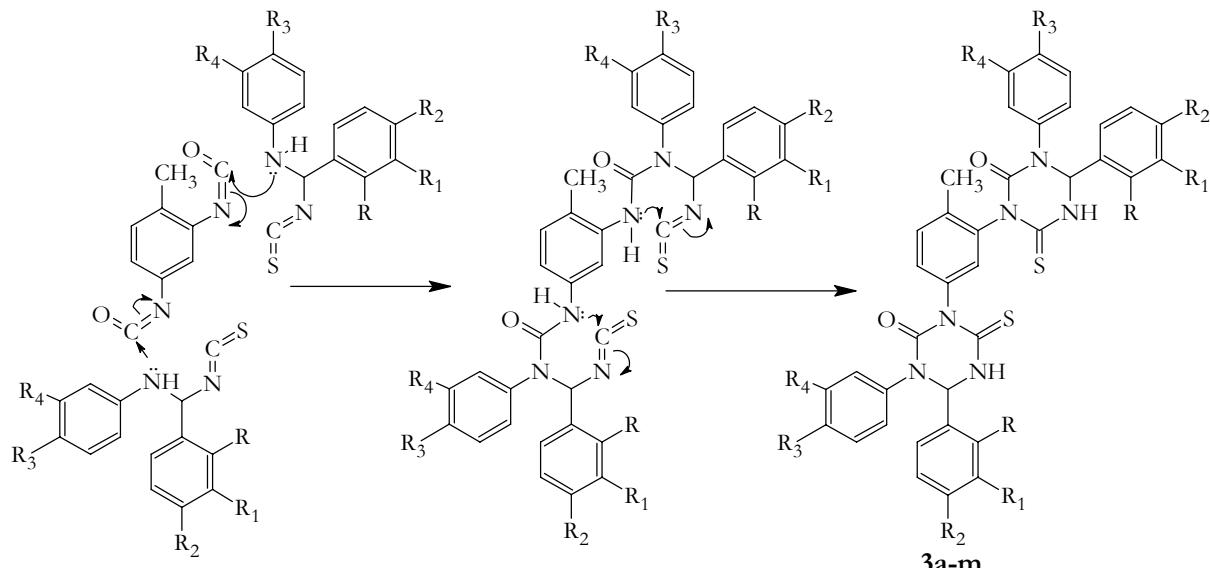
Scheme III

Scheme IV

showed weak molecular ion peaks because these triazines **3a-m** are very easily susceptible to fragmentation under electron impact. The results are in agreement with those obtained previously in case of hexahydro-1,3,5-triazines^{14,15}. Mass spectra of toluene-2,4-di(4-(*p*-methoxyphenyl)-5-(*m*-chlorophenyl)-6-thioxo-1,3,5-triazinan-2-one **3b**, showed peaks at *m/z* 133, 59, 192 and 154. However, toluene-2,4-


di(4-(*p*-methoxyphenyl)-5-(phenyl))-6-thioxo-1,3,5-triazinan-2-one **3a**, showed peaks at *m/z* 133, 59, 192 and 119. The fragmentation patterns of **3a** and **3b** are shown in **Schemes III** and **IV** respectively.

Other common features noted in the fragmentation pattern of **3a-m** are, loss of fragments of *m/z* 133(Path-a) and 59(Path-b), 192 (Path-c) and the fragment whose mass depends upon the substitution at the N-aryl ring. For example, in case of toluene-2,4-


di(4-(*p*-methoxyphenyl),-5-(*m*-chlorophenyl)-6-thioxo-1,3,5-triazinan-2-one **3b**, where N-aryl ring is substituted by chlorine, fragment m/z 154 is obtained (Path-d), whereas in case of toluene-2,4-di(4-(*p*-methoxyphenyl),-5-(phenyl))-6-thioxo-1,3,5-triazinan-2-one **3a**, where there is no substitution on the N-aryl ring, fragment of m/z 119 is obtained (Path-d) (**Scheme V**) which clearly supports the assigned structures.

The possible general mechanism for the formation of hexahydro-s-triazines **3a-m** from various N-substituted- α -amino isothiocyanates **2a-m** and toluene-2,4-diisocyanate is described in **Scheme VI**.

In conclusion, N-substituted- α -aminoisothiocyanates,

Scheme V

Scheme VI

which can be easily prepared by the addition of ammonium thiocyanate/acetic acid (thiocyanic acid) to an equimolar mixture of aromatic carbonyl compounds and aromatic amines were found to be useful starting materials for the synthesis of hexahydro-1,3,5-triazine derivatives. The chief advantage of this method over the other existing methods is that α -aminoisothiocyanates are obtained in isolable quantitative yields, and their further reaction with toluene-2,4-diisocyanate produces excellent yields of triazines with no other side products unlike in some other cases^{6,7}.

Experimental

Melting points were determined in open capillary

tubes in sulphuric acid bath and are uncorrected. Infrared spectra were recorded in KBr pellets on a Perkin-Elmer spectrophotometer and ^1H NMR spectra on a EM-390, 90MHz NMR spectrometer using tetramethylsilane (TMS) as internal standard. The homogeneity of compounds was checked by TLC on silica-gel G plates and spots were located in iodine vapour chamber.

General procedure for the synthesis of N-substituted- α -aminoisothiocyanates **2a-m from azomethines **1a-m**.**

To a stirred solution of **1a-m** (0.01 mole) in glacial acetic acid was added ammonium thiocyanate (0.015 mole) in one lot. After stirring for 30 min, N-substituted- α -aminoisothiocyanate **2a-m** separated out which was filtered, washed with water, dried and purified by recrystallization from ethanol or ethanol-THF mixture (**Table I**).

General procedure for the synthesis of toluene-2,4-di(arylalkyl)-6-thioxo-1,3,5-triazinan-2-one derivatives **3a-m from **2a-m****

A solution of toluene-2,4-diisocyanate (0.005 mole) in THF was added dropwise to a solution of N-substituted- α -aminoisothiocyanate **2a-m** (0.01mole) in THF at reflux temperature. The reaction mixture was refluxed for 4-5 hr. The solvent was evaporated to give **3a-m**, which was filtered and purified by recrystallization from MeOH-THF mixture. The ^1H NMR data for **3a-m** is shown in **Table II**.

Acknowledgement

The authors are greatly indebted to the Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal (District Sangrur) Punjab, India for providing laboratory facilities.

References

- 1 Hagemann H, *Angew Chem Int Ed Engl*, 16, **1977**, 743.
- 2 Joshua C P & Thomas S K, *Synthesis*, 12, **1982**, 1070.
- 3 Joshua C P, Presannan E & Saramma K T, *Australian J Chem*, 34, **1981**, 917.
- 4 Argabright PA & Phillips BL, *J Heterocycl Chem*, 7, **1970**, 725.
- 5 Seckinger K, *Helv Chim Acta*, 56, **1973**, 1225.
- 6 Clemens D H & Emmons W D, *J Org Chem*, 26, **1961**, 767.
- 7 Suschitzky H, Walrond R E & Hull R, *J Chem Soc Perkin Trans 1*, **1977**, 47.
- 8 Richter R & Trautwein W P, *Chem Ber*, 102, **1969**, 931.
- 9 (a) Willi K, Erwin H, Peter S & Braeuner H J, *Ann Chem*, I, **1985**, 65. (b) Hoz, A D, Elguero J, Martinez L J, Moreno A & Migallon A S, *Tetrahedron*, 57(20), **2001**, 4397.
- 10 Bedel O, Urban D & Langlos Y, *Tetrahedron Lett*, 43(4), **2002**, 607.
- 11 Vilaivan T, Saesaengseerung N, Jarprung D, Kamchonwongpaisan S, Jarprung D, Kamchonwongpaisan S, Sirawaraporn W & Yuthavong Y, *Bioorg & Med Chem*, 11(2), **2003**, 217.
- 12 Okawa T, Oskada N, Eguchi S & Kakehi A, *Tetrahedron*, 53(47), **1997**, 16061.
- 13 Corral R A & Orazi O O, *Org Mass Spec*, 11, **1976**, 1221.
- 14 Schumacher E & Taubenest R, *Helv Chim Acta*, 49, **1966**, 1439.
- 15 Balusu S, Axenrod T & Milne G W A, *Org Mass Spec*, 3, **1970**, 13.